Our webstore uses cookies to offer a better user experience and we recommend you to accept their use to fully enjoy your navigation.
0104110000010247
New product
This sensor module has 8 IR LED/phototransistor pairs mounted on a 0.375" pitch, making it a great detector for a line-following robot. Pairs of LEDs are arranged in series to halve current consumption, and a MOSFET allows the LEDs to be turned off for additional sensing or power-savings options. Each sensor provides a separate analog voltage output.
See description for more details about the product.
Add to cart now!
0 Item Items
This product is no longer in stock
Warning: Last items in stock!
Availability date:
Note: The QTR-8A reflectance sensor array requires analog inputs to take readings. The similar QTR-8RC reflectance sensor array is available with digital I/O-compatible outputs, and the reflectance sensor is available individually as a QTR-1A reflectance sensor or QTR-1RC reflectance sensor.
The QTR-8A reflectance sensor array is intended as a line sensor, but it can be used as a general-purpose proximity or reflectance sensor. The module is a convenient carrier for eight IR emitter and receiver (phototransistor) pairs evenly spaced at intervals of 0.375" (9.525 mm). Each phototransistor is connected to a pull-up resistor to form a voltage divider that produces an analog voltage output between 0 V and VIN (which is typically 5 V) as a function of the reflected IR. Lower output voltage is an indication of greater reflection.
The outputs are all independent, but the LEDs are arranged in pairs to halve current consumption. The LEDs are controlled by a MOSFET with a gate normally pulled high, allowing the LEDs to be turned off by setting the MOSFET gate to a low voltage. Turning the LEDs off might be advantageous for limiting power consumption when the sensors are not in use or for varying the effective brightness of the LEDs through PWM control.
The LED current-limiting resistors for 5 V operation are arranged in two stages; this allows a simple bypass of one stage to enable operation at 3.3 V. The LED current is approximately 20-25 mA, making the total board consumption just under 100 mA. The schematic diagram of the module is shown below:
For a similar array with three sensors, consider our QTR-3A reflectance sensor array. The sensors on the QTR-8A are also available individually as the QTR-1A reflectance sensor, and the QTR-L-1A is an alternative designed to be used with the board perpendicular to the surface.
QTR sensor size comparison. Top row: QTRX-HD-07, QTR-HD-07; middle row: QTR-3, QTR-1, QTR-L-1; bottom row: QTR-8.
• Dimensions: 2.95" x 0.5" x 0.125" (without header pins installed)
• Operating voltage: 3.3-5.0 V
• Supply current: 100 mA
• Output format: 8 analog voltages
• Output voltage range: 0 V to supplied voltage
• Optimal sensing distance: 0.125" (3 mm)
• Maximum recommended sensing distance: 0.25" (6 mm)
• Weight without header pins: 0.11 oz (3.09 g)
There are several ways you can interface with the QTR-8A outputs:
• Use a microcontroller’s analog-to-digital converter (ADC) to measure the voltages.
• Use a comparator with an adjustable threshold to convert each analog voltage into a digital (i.e. black/white) signal that can be read by the digital I/O line of a microcontroller.
• Connect each output directly to a digital I/O line of a microcontroller and rely upon its internal comparator.
This last method will work if you are able to get high reflectance from your white surface as depicted in the left image, but will probably fail if you have a lower-reflectance signal profile like the one on the right.
QTR-1A output 1/8" away from a spinning white disk with a black line on it.
QTR-1A output 3/8" away from a spinning white disk with a black line on it.
Our Pololu AVR library provides functions that make it easy to use these sensors with the Orangutan robot controllers. We also have a Arduino library for these sensors.
If you don’t need or cannot fit all eight sensors, you can break off two sensors and still use all 8 sensors as two separate modules, as shown below. The PCB can be scored from both sides along the perforation and then bent until it snaps apart. Each of the two resulting pieces will function as an independent line sensor.
18650 Panasonic NCR18650B Li-ion rechargeable...
$11.89
Whether your project is space constrained or...
$1.68
BMP180 sensor module is ideal for measuring...
$1.68
The compact (0.5" x 0.7") D24V10F5 synchronous...
$15.84
FR0109M is low price high quality digital robot...
$27.60
M3x4 mm Flat Head Fixing Screw See description...
$0.09
GA12-N20 Micro Gearmotor 12GAN20-20 with 10 mm...
$6.00
Ideal wires for making connections for...
$0.96
27 mm Wheel with Rubber
$0.59
The ESP8266 Wifi module is a low cost and...
$4.20