
MPR121 Capacitive Touch Sensor on Raspberry Pi & BeagleBone
Black

Created by Tony DiCola

Last updated on 2016-04-30 11:51:20 AM EDT

2
3
5
5
5
5
6

8
8
8
9
9
9

12
12
12
12
13
14
14

16

Guide Contents

Guide Contents
Overview
Hardware
Parts
Wiring

Raspberry Pi
BeagleBone Black

Software
Dependencies
Installation
Usage
Example Code
Library Usage
Raspberry Pi Virtual Keyboard
Wiring
Dependencies
Configuration
Usage

Launch In Background
Stop Background Process

Electrodes

© Adafruit Industries https://learn.adafruit.com/mpr121-capacitive-touch-sensor-on-
raspberry-pi-and-beaglebone-black

Page 2 of 17

Overview

Reach out and touch someone, or something, with the MPR121 capacitive touch sensor and a
Raspberry Pi or BeagleBone Black! This breakout provides 12 capacitive touch inputs and all the logic
to read them over a simple I2C communication bus. For example you can make your own buttons,
detect if someone touched a device, create a fun plush game controller (http://adafru.it/ne8), or even a
wacky devices like a banana piano (http://adafru.it/eid)!

With the MPR121 python library you can now easily use the MPR121 capacitive touch sensor with a
Raspberry Pi or BeagleBone Black. Follow this guide to learn how to connect the MPR121 to
a development board, install the python library, and start using the MPR121 with your own programs
on the Pi or BeagleBone Black. I'll even show you how to create a 'virtual keyboard' to send key
presses when inputs are touch on a Raspberry Pi--great for making a fun controller kind of like the
Makey Makey (http://adafru.it/eie)!

Before you get started you'll want to be familiar the MPR121 breakout and connecting to your
development board's Linux terminal. Check out the following guides if you need a little more
information:

Adafruit MPR121 12-Key Capacitive Touch Sensor Tutorial (http://adafru.it/dKH)
Adafruit Raspberry Pi Lesson 6: Using SSH (http://adafru.it/jsE) or SSH To BeagleBone Black
Over USB (http://adafru.it/ne9)

© Adafruit Industries https://learn.adafruit.com/mpr121-capacitive-touch-sensor-on-
raspberry-pi-and-beaglebone-black

Page 3 of 17

file:///plush-game-controller
https://www.youtube.com/watch?v=pfjWdoW7pt4
https://www.adafruit.com/product/1068
file:///adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-tutorial
file:///adafruits-raspberry-pi-lesson-6-using-ssh/overview
file:///ssh-to-beaglebone-black-over-usb/overview

In addition you'll want to make sure your Raspberry Pi is running the latest version of the
Raspbian (http://adafru.it/dpb) or Occidentalis (http://adafru.it/dvg) operating system, or your
BeagleBone Black is running the latest Debian (http://adafru.it/dUl) operating system.

When you're ready to start, continue on to learn what hardware you'll need and how to wire it together.

© Adafruit Industries https://learn.adafruit.com/mpr121-capacitive-touch-sensor-on-
raspberry-pi-and-beaglebone-black

Page 4 of 17

http://www.raspberrypi.org/downloads/
file:///adafruit-raspberry-pi-educational-linux-distro/occidentalis-v0-dot-2
http://beagleboard.org/latest-images

Hardware

Parts
You'll need the following parts to build this project:

MPR121 Breakout (http://adafru.it/dKK)
If you haven't assembled it yet, follow the MPR121 guide (http://adafru.it/dKH) to solder
the breakout board.

Long wires, aluminum foil, or other surface (http://adafru.it/nea) to use as capacitive touch
inputs to the MPR121.
Raspberry Pi (http://adafru.it/1914) (any model A, B, A+, or B+), or BeagleBone
Black (http://adafru.it/1876).
Breadboard (http://adafru.it/239) and jumper wires (http://adafru.it/1957).

Wiring
Place the MPR121 board into a breadboard and connect its inputs to the electrodes you plan to use.
 Then follow the wiring below for your platform to connect the MPR121 to an I2C communication
channel.

Raspberry Pi
On a Raspberry Pi connect the hardware as follows.

Note: Make sure you've enabled I2C on your Raspberry Pi (http://adafru.it/dEO)!

© Adafruit Industries https://learn.adafruit.com/mpr121-capacitive-touch-sensor-on-
raspberry-pi-and-beaglebone-black

Page 5 of 17

https://www.adafruit.com/product/1982
file:///adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-tutorial
file:///adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-tutorial/electrodes
https://www.adafruit.com/products/1914
https://www.adafruit.com/products/1876
https://www.adafruit.com/products/239
https://www.adafruit.com/products/1957
file:///adafruits-raspberry-pi-lesson-4-gpio-setup/configuring-i2c

Connect Raspberry Pi 3.3V to MPR121 VIN.
Connect Raspberry Pi GND to MPR121 GND.
Connect Raspberry Pi SCL to MPR121 SCL.
Connect Raspberry Pi SDA to MPR121 SDA.

BeagleBone Black
On a BeagleBone Black connect the hardware as follows. If you aren't familir with how pins are
numbered on the BeagleBone Black be sure to read this guide first (http://adafru.it/dCI).

© Adafruit Industries https://learn.adafruit.com/mpr121-capacitive-touch-sensor-on-
raspberry-pi-and-beaglebone-black

Page 6 of 17

file:///setting-up-io-python-library-on-beaglebone-black/using-the-bbio-library

Connect BeagleBone Black 3.3V pin P9_3 to MPR121 VIN.
Connect BeagleBone Black DGND pin P9_1 to MPR121 GND.
Connect BeagleBone Black I2C2 SCL pin P9_19 to MPR121 SCL.
Connect BeagleBone Black I2C2 SDA pin P9_20 to MPR121 SDA.

Once the hardware is connected to your development board, continue on to learn how to install the
software for this project.

© Adafruit Industries https://learn.adafruit.com/mpr121-capacitive-touch-sensor-on-
raspberry-pi-and-beaglebone-black

Page 7 of 17

Software

Dependencies
Before you install the software you'll first need to install a few dependencies. Make sure your
Raspberry Pi or BeagleBone Black is connected to the internet with a wired or wireless connection.
 Then connect to a terminal on the device using SSH and execute the commands:

sudo apt-get update
sudo apt-get install build-essential python-dev python-smbus python-pip git

When prompted to install the dependencies answer yes, and after a few moments the necessary
libraries and software should be installed. You can also ignore any messages about dependencies
which are already installed.

Installation
Follow the steps below to install the software for the Python MPR121 library (http://adafru.it/eij). At a
terminal execute the following commands to download the library into a subdirectory of your user's
home directory.

cd ~
git clone https://github.com/adafruit/Adafruit_Python_MPR121.git

Next execute the following commands to install the library:

cd Adafruit_Python_MPR121
sudo python setup.py install

The setup script will download a few dependencies and install the library. If there are errors, carefully
check all the dependencies above were installed and try again.

That's it, the MPR121 library is now installed! Continue on to learn how to run an example program
and learn how to use the library.

© Adafruit Industries https://learn.adafruit.com/mpr121-capacitive-touch-sensor-on-
raspberry-pi-and-beaglebone-black

Page 8 of 17

https://github.com/adafruit/Adafruit_Python_MPR121

Usage

Example Code
Once the library is installed you can run an example program to test the capacitive touch inputs.
 Navigate to the examples folder of the library and run the simpletest.py example by executing:

cd examples
sudo python simpletest.py

Note that the example is run as a root user with the sudo command, this is required to access the
hardware on the Pi.

Once the example is running you should see text like the following printed on the screen:

Adafruit MPR121 Capacitive Touch Sensor Test
Press Ctrl-C to quit.

Try pressing some of the capacitive inputs you've connected (or even just touching the solder joints of
the inputs!). You should see a message each time an input is pressed and released, for example:

11 touched!
10 touched!
10 released!
11 released!
10 touched!
11 touched!
10 released!
11 released!

When you're finished, press Ctrl-C to quit the program.

Library Usage
To understand how the library works, let's examine the simpletest.py example code in detail. Open
the file in a text editor and follow along as I explain each important part below.

import sys
import time

import Adafruit_MPR121.MPR121 as MPR121

© Adafruit Industries https://learn.adafruit.com/mpr121-capacitive-touch-sensor-on-
raspberry-pi-and-beaglebone-black

Page 9 of 17

print 'Adafruit MPR121 Capacitive Touch Sensor Test'

First you'll see the example import modules which it will use and print a message on the screen. Note
the Adafruit_MPR121.MPR121 module which is imported as the shorter MPR121 name. This module
is the MPR121 library that was installed earlier and this line will make it available to our python
program.

Create MPR121 instance.
cap = MPR121.MPR121()

Initialize communication with MPR121 using default I2C bus of device, and
default I2C address (0x5A). On BeagleBone Black will default to I2C bus 0.
if not cap.begin():
 print 'Error initializing MPR121. Check your wiring!'
 sys.exit(1)

Alternatively, specify a custom I2C address such as 0x5B (ADDR tied to 3.3V),
0x5C (ADDR tied to SDA), or 0x5D (ADDR tied to SCL).
#cap.begin(address=0x5B)

Also you can specify an optional I2C bus with the bus keyword parameter.
#cap.begin(bus=1)

Next an instance of the MPR121 class is created and initialized. You can see the first line creates the
object, and the next lines call the begin() function to initialize the device. It's very important to make
sure you call begin() before you call any other functions on the MPR121 object.

Also notice in the comments that you can customize the I2C address or bus by sending optional
parameters to the begin() function. By default the function will try to pick the right I2C bus for your
device but these parameters allow you to specify explicit values.

Main loop to print a message every time a pin is touched.
print 'Press Ctrl-C to quit.'
last_touched = cap.touched()
while True:
 current_touched = cap.touched()
 # Check each pin's last and current state to see if it was pressed or released.
 for i in range(12):
 # Each pin is represented by a bit in the touched value. A value of 1
 # means the pin is being touched, and 0 means it is not being touched.
 pin_bit = 1 << i
 # First check if transitioned from not touched to touched.
 if current_touched & pin_bit and not last_touched & pin_bit:
 print '{0} touched!'.format(i)
 # Next check if transitioned from touched to not touched.
 if not current_touched & pin_bit and last_touched & pin_bit:

© Adafruit Industries https://learn.adafruit.com/mpr121-capacitive-touch-sensor-on-
raspberry-pi-and-beaglebone-black

Page 10 of 17

 print '{0} released!'.format(i)
 # Update last state and wait a short period before repeating.
 last_touched = current_touched
 time.sleep(0.1)

Now the program enters its main loop where it reads each input and checks if it's changed.

The most important thing to see is the touched() function. This function returns a 12-bit value where
each bit represents one of the 12 inputs on the MPR121 board. Bit 0 represents input 0, bit 1
represents input 1, etc. all the way up to bit 11 and input 11. If a bit is 1 then the input is being
touched, and if it's 0 then the input is not being touched.

This loop will compare the previous value for each bit to its current value, so if the value changes a
message can be printed. Detecting if an input is touched is as simple as calling the touched() function
and checking the value of a bit!

 # Alternatively, if you only care about checking one or a few pins you can
 # call the is_touched method with a pin number to directly check that pin.
 # This will be a little slower than the above code for checking a lot of pins.
 #if cap.is_touched(0):
 # print 'Pin 0 is being touched!'

Further below you can see commented code which describes how to use the is_touched() function.
 This function is a little simpler than the touched() function as it only checks if one input is being
touched and returns True (input is being touched) or False (input is not being touched). If you only
need to check one or a few inputs this function might be an easier option.

 # If you're curious or want to see debug info for each pin, uncomment the
 # following lines:
 #print '\t\t\t\t\t\t\t\t\t\t\t\t\t 0x{0:0X}'.format(cap.touched())
 #filtered = [cap.filtered_data(i) for i in range(12)]
 #print 'Filt:', '\t'.join(map(str, filtered))
 #base = [cap.baseline_data(i) for i in range(12)]
 #print 'Base:', '\t'.join(map(str, base))

Finally the last commented section shows how you can see interesting debug info for the device. The
filtered_data() and baseline_data() functions each can be called to look up the filtered data and
baseline data register values for an input. Read the MPR121 datasheet (http://adafru.it/dKG) to better
understand how the chip uses baseline and filtered data to detect touches.

That's all there is to using the MPR121 library! If you find issues or would like to contribute to the
library, feel free to do so at it's home on GitHub (http://adafru.it/eij).

© Adafruit Industries https://learn.adafruit.com/mpr121-capacitive-touch-sensor-on-
raspberry-pi-and-beaglebone-black

Page 11 of 17

http://www.adafruit.com/datasheets/MPR121.pdf
https://github.com/adafruit/Adafruit_Python_MPR121

Raspberry Pi Virtual Keyboard
One great use for the MPR121 is as a capacitive touch keyboard, where pressing a touch input
causes a key to be pressed on a Raspberry Pi. This is kind of like a Makey
Makey (http://adafru.it/1068) but built right into the Pi using just the MPR121 and some special
software. You could for example configure the MPR121 to act as a giant gamepad that controls
games on the Raspberry Pi!

Wiring
To use the MPR121 as a virtual keyboard you'll first want to make sure you've followed the earlier
pages in this guide to connect the MPR121 to the Raspberry Pi and install the software.

Next you'll need to add one additional wire to the MPR121 setup. This is to connect the MPR121 IRQ
line to an input on the Raspberry Pi so the software can quickly detect when an input has been
touched without having to continually poll the MPR121 (which takes a lot of CPU!).

By default the virtual keyboard example assumes input #26 (only exposed on the Pi Model A+ or B+!)
is connected to the IRQ line. If you're using an earlier Pi, connect the IRQ line to any free digital input
on the Pi, such as input #18.

Dependencies
Now open a terminal on the Raspberry Pi using SSH and execute the following commands to install a
few dependencies required by the virtual keyboard script:

sudo apt-get update
sudo apt-get install libudev-dev
sudo pip install python-uinput

Configuration
After the dependencies are installed navigate to the MPR121 library examples folder again. Open the
keyboard.py script in a text editor such as nano by executing:

nano keyboard.py

Now scroll down to the key configuration near the top of the file:

Define mapping of capacitive touch pin presses to keyboard button presses.
KEY_MAPPING = {

© Adafruit Industries https://learn.adafruit.com/mpr121-capacitive-touch-sensor-on-
raspberry-pi-and-beaglebone-black

Page 12 of 17

https://www.adafruit.com/products/1068

 0: uinput.KEY_UP, # Each line here should define a dict entry
 1: uinput.KEY_DOWN, # that maps the capacitive touch input number
 2: uinput.KEY_LEFT, # to an appropriate key press.
 3: uinput.KEY_RIGHT, #
 4: uinput.KEY_B, # For reference the list of possible uinput.KEY_*
 5: uinput.KEY_A, # values you can specify is defined in linux/input.h:
 6: uinput.KEY_ENTER, # http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/include/linux/input.h?v=
2.6.11.8
 7: uinput.KEY_SPACE, #
 } # Make sure a cap touch input is defined only
 # once or else the program will fail to run!

Input pin connected to the capacitive touch sensor's IRQ output.
For the capacitive touch HAT this should be pin 26!
IRQ_PIN = 26

The KEY_MAPPING variable is a dictionary that maps an input number on the MPR121 to a keyboard
button that will be sent when the input is pressed.

For example the code above configures input 0 to the UP key, input 1 to the DOWN key, input 2 to the
LEFT key, etc.

Adjust the inputs and key codes depending on your needs. Most of the key codes are self explanatory
(i.e. the key code for the letter Q is uinput.KEY_Q), but if you are unsure of an input you can find the
name of a keycode in the Linux input header here (http://adafru.it/eik). Take the key name and add
uinput. to the front of it to get the key code that should be in the configuration above.

If you need to add more inputs you can add them as new lines after input 7 above. Be careful to
make sure each new line ends in a comma so the python dictionary is defined correctly.

Also if you had to connect the IRQ line to a different input than #26, be sure to set the IRQ_PIN value
to the input number you are using.

After you've configured your key mapping save the file by pressing Ctrl-O and Enter, then quit by
pressing Ctrl-X.

Usage
Now run the program by executing:

sudo python keyboard.py

After a moment you should see a message displayed that tells you to press Ctrl-C to quit the program.
 If you press inputs to the MPR121 they should send the keys you've configured to the Raspberry Pi!

Note that you won't see any output from the program when keys are pressed.

Quit the program by pressing Ctrl-C.

© Adafruit Industries https://learn.adafruit.com/mpr121-capacitive-touch-sensor-on-
raspberry-pi-and-beaglebone-black

Page 13 of 17

http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/include/linux/input.h?v=2.6.11.8

Launch In Background
Running the program by itself is great, but you probably want to run the program in the background
while a game or other application runs and takes input from the MPR121 key presses. To do this you
can launch the program into the background by executing at the terminal:

sudo python keyboard.py &

You should see a response such as:

[1] 2251

This tells you the program is launched in the background and is currently running under the process
ID 2251. Try to remember the process ID as it will help you shut down the program later (but don't
worry, I'll show you how to shut down the program even if you forget the ID).

Now run a game or other program that relies on keyboard input. Try pressing inputs on the MPR121
and you should see them register as keyboard presses!

Stop Background Process
To stop the background process you'll need to tell Linux to kill the python keyboard.py process that
was launched in the background earlier. If you remember the process ID number you can skip below
to the kill command. However if you forgot the process ID number you can find it by executing a
command like this to search all running processes for the keyboard.py script:

ps aux | grep keyboard.py

You should see a list of processes such as:

root 2251 0.5 0.3 5136 1488 pts/0 S 09:13 0:00 sudo python keyboard.py
root 2252 13.2 1.4 18700 5524 pts/0 Sl 09:13 0:00 python keyboard.py
pi 2294 0.0 0.2 4096 804 pts/0 S+ 09:13 0:00 grep --color=auto keyboard.py

The first line with 'sudo python keyboard.py' is the background process that was launched earlier. You
can kill this process by running:

sudo kill 2251

If you run the ps command above again you should now see the python keyboard.py processes have
terminated.

That's all there is to using the MPR121 virtual keyboard on a Raspberry Pi. Have fun using the
capacitive touch buttons to control your own games and programs!

© Adafruit Industries https://learn.adafruit.com/mpr121-capacitive-touch-sensor-on-
raspberry-pi-and-beaglebone-black

Page 14 of 17

© Adafruit Industries https://learn.adafruit.com/mpr121-capacitive-touch-sensor-on-
raspberry-pi-and-beaglebone-black

Page 15 of 17

Electrodes

Once you have the MPR121 breakout working you'll want to construct electrodes. These are large
conductive piece of copper, foil, paint, etc that will act as the "thing you touch"

Remember that electrodes must be electrically conductive! We suggest copper foil tape, conductive
fabrics, ITO, pyralux flex PCB, etc. We have tons of great conductive materials in our Materials
category. Some can be soldered to, others can be clipped to with alligator chips. (http://adafru.it/dKI)

Remember, it doesn't have to be metal to be electrically conductive. Other things that work are tap or
salt water, many kinda of food, even fruit!

We suggest soldering a wire to the electrode pad on the breakout and then soldering or clipping it to
whatever you want your electrode to be.

The wires and electrodes themselves have a certain amount of 'inherent capacitcance'!

© Adafruit Industries https://learn.adafruit.com/mpr121-capacitive-touch-sensor-on-
raspberry-pi-and-beaglebone-black

Page 16 of 17

https://www.adafruit.com/categories/190

This means that whenever you attach an alligator clip, or a large piece of copper, or whatever your
electrode is, the capacitive sense chip will detect it and may think you're touching it. What you have to
do is recalibrate the sensor. The easiest way to do that is to restart the python sketch since calibration
is done when the chip is initialized. So, basically...

connect all your wires, electrodes, fruit, etc...then start up the capacitive touch program!

© Adafruit Industries Last Updated: 2016-04-30 11:51:21 AM EDT Page 17 of 17

	Guide Contents
	Overview
	Hardware
	Parts
	Wiring
	Raspberry Pi
	BeagleBone Black

	Software
	Dependencies
	Installation
	Usage
	Example Code
	Library Usage
	Raspberry Pi Virtual Keyboard
	Wiring
	Dependencies
	Configuration
	Usage
	Launch In Background
	Stop Background Process

	Electrodes

